Towards the Replacement Therapy Using Neural Stem/Progenitor cells for Neurological Disorders: Strategies to Enhance Therapeutic Capacity of Transplantation Approaches
نویسنده
چکیده
Transplantation of neural stem/progenitor cells (NPC) holds potential to improve functional outcomes in various neurological disorders. It seems more difficult than previously envisioned, however, to functionally replace the lost neural cells by grafted NPCs. A lack of appropriate developmental cues in the injured tissue contributes to the failure to guide the NPCs to survive, differentiate, grow axons, and functionally integrate to the host neural circuit. Therefore, we need to design possible strategies to recapitulate the developmental processes for the grafted NPCs to fully mature into functional neural cells. To enhance survival of NPCs following transplantation, pharmacological treatments targeting apoptosis and inflammation can be combined with transplantation. Genetic overexpression of prosurvival genes or growth factors can also improve survival. In vitro predifferentiation not only provides neural cells of a specific lineage in high purity but also greatly reduces chances of a tumor formation. Genetic overexpression of various transcription factors or manipulating molecular microenvironment of the host can also be tried to force differentiation of NPCs to a desired lineage. Pharmacological application to overcome myelin inhibition or enzymatic degradation of the inhibitory extracellular matrix will enhance axonal growth of NPC-derived neurons. Increasing synaptic activity by behavioral training or patterned electrical stimulation may promote proper development of synaptic integration and myelination of the axon. A thorough understanding of cellular and molecular aspects of neural development will help design more sophisticated strategies to enhance therapeutic capacity of NPC transplantation to reconstruct the damaged neural circuit. J Korean Neurol Assoc 24(6):527-534, 2006
منابع مشابه
Generation of motor neurons from human amygdala-derived neural stem-like cells
Objective(s): Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal...
متن کاملP 53: Stem Cell Therapy for Treatment of Autoimmune Diseases (with Emphasis on Multiple Sclerosis)
Autoimmune diseases have been described as an interesting and poorly understood group of disorders. There are many challenges in the respective scientific societies concerning the nature, causes and the therapeutic approaches of these diseases. In accordance with the evidences the nature and etiology of these disorders is multifactorial and complex but the clearest definition could be expressed...
متن کاملP165: Therapeutic Potentials of Stem-Cell-Based Therapy for Parkinson\'s Disease; Current Status of Human Endometrium-Derived Mesenchymal Stem Cells
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by motor and non-motor symptoms. It is expected to impose an increasing economic and social burden on human populations. The motor symptoms of PD are well known, including age-dependent uncontrollable resting tremor, bradykinesia, rigidity, posture instability. In the non-motor symptoms, cognitive changes, d...
متن کاملA Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells
Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...
متن کاملP91: Auto Graft Transplantation of Adult Human Neural Stem Cells in Treatment of Traumatic Brain Injury as a Hypothesis
Traumatic brain injury (TBI) leading to 5 million deaths annually is 1 of the 5 major causes of morbidity and mortality worldwide. In Iran, accidents are the main cause of death in youth as well as a dominant factor in reducing quality of life. In developing countries TBI incidence as one of the worst consequences of these accidents is growing due to wide use of motor-vehicles. Therapeutic stra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006